Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

3-(Triphenylphosphoranylidene)-pentane-2,4-dione and diethyl 2-(triphenylphosphoranylidene)malonate

Fernando Castañeda, ${ }^{\text {a* }}$ Christian Aliaga, ${ }^{\text {a }}$ Clifford A. Bunton, ${ }^{\text {b }}$ María Teresa Garland ${ }^{\text {c* }}$ and Ricardo Baggio ${ }^{\text {d }}$

${ }^{\text {a }}$ Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias, Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago, Chile,
${ }^{\text {b }}$ Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 931060, USA, ${ }^{\text {c }}$ Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago de Chile, Chile, and dDepartamento de Física, Comisión Nacional de Energía Atómica, Av. Gral Paz 1499, 1650 Buenos Aires, Argentina
Correspondence e-mail: fcastane@ciq.uchile.cl, mtgarlan@dfi.uchile.cl

Received 22 March 2005
Accepted 11 May 2005
Online 23 July 2005
The title ylides, 3-(triphenylphosphoranylidene)pentane-2,4dione, $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{P}$, (I), and diethyl 2-(triphenylphosphoranylidene)malonate, $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{P}$, (II), differ in the conformations adopted by their extended ylide moieties. In (I), one carbonyl O atom is syn and the other is anti with respect to the P atom, the ylide group is nearly planar, with a maximum $\mathrm{P}-\mathrm{C}-$ $(\mathrm{C}=\mathrm{O})$ angle of $18.2(2)^{\circ}$, and the $\mathrm{P}-\mathrm{C}, \mathrm{C}-\mathrm{C}$ and $\mathrm{C}=\mathrm{O}$ bond lengths are consistent with electronic delocalization involving the O atoms. In (II), both carbonyl O atoms are anti and the ester groups are twisted out of the plane of the near trigonal ylide C atom, reducing delocalization, the largest $\mathrm{P}-$ $\mathrm{C}-(\mathrm{C}=\mathrm{O})$ angle being $30.2(2)^{\circ}$.

Comment

For acyl(alkoxycarbonyl)phosphoranes (keto esters), the conformations are similar in solution and in the solid state, with the keto and alkoxy O atoms oriented towards the phosphorus and the acyl groups in the ylide plane, thus allowing extended ylide resonance (Abell \& Massy-Westropp, 1982; Abell et al., 1988, 1989). Classical structures of stabilized ylides are accordingly written with a double bond between the ylide C atom and the stabilized group (Bachrach \& Nitsche, 1994). We have shown elsewhere (Castañeda, Terraza et al., 2003) that acyl(alkoxycarbonyl)phosphoranes, $\mathrm{Ph}_{3} \mathrm{P}=$ $\mathrm{C}\left(\mathrm{COR}^{\prime}\right) \mathrm{CO}_{2} R$, can adopt a near planar preferred conformation that allows extensive electronic delocalization and favorable interactions between the cationoid P atom and the keto and alkoxy O atoms, both in the solid state and in solution. The preferred conformations result from both attractive and repulsive intramolecular interactions in solution, and
possible intermolecular interactions in the solid state. Diacylphosphorane conformations should be similar to those of the keto esters.

The scheme above depicts a diacyl ylide that can adopt various conformations depending on the orientations of the carbonyl groups relative to the P atom. The methyl signal in the ${ }^{1} \mathrm{H}$ NMR spectrum in CHCl_{3} is a sharp singlet over a wide temperature range. In ylide solutions, these groups are therefore equivalent or are equilibrating rapidly on the NMR timescale, although equilibration is slow in monoacyl ylides (Wilson \& Tebby, 1972). These differences are consistent with energy barriers for equilibration from $a b$ initio computations (Castañeda, Recabarren et al., 2003; Bachrach, 1992). Conformer (b), with both carbonyl O atoms syn with respect to the P atom, has favorable interactions between anionoid O atoms and cationoid P atoms, and this structure is supported by chemical evidence (Cooke \& Goswami, 1973). However, in a near planar ylide moiety, there will be methyl-methyl repulsions. The anti-anti coplanar conformation, (c), should be electrostatically disfavored because of dipole repulsions between the carbonyl groups and possible steric repulsions between methyl and phenyl groups.

The crystal structures of two ylides are discussed here, viz. 3-(triphenylphosphoranylidene)pentane-2,4-dione, (I), and diethyl 2-(triphenylphosphoranylidene)malonate, (II), stabilized by diketo and diester groups, respectively (Figs. 1 and 2).

(I)

(II)

The structural results are consistent with previous NMR, chemical and computational evidence (Castañeda, Terraza et al., 2003) regarding differences in the solid state and in solution. Selected bond lengths and angles are presented in Tables 1 and 3, with hydrogen-bond and short-contact geometry in Tables 2 and 4.

The two ylides share a number of common features, in particular a slightly distorted tetrahedral arrangement around the P atom, as observed for stabilized keto-ester phosphorus ylides (Castañeda, Terraza et al., 2001). The $\mathrm{P}-\mathrm{C}$ bonds [P1$\mathrm{C} 1=1.7521$ (18) and 1.748 (3) A for (I) and (II), respectively] are longer than typical double bonds, because of the ylidic resonance, and intermediate between commonly accepted values for single and double bonds ($\mathrm{P}-\mathrm{C}=1.80-1.83 \AA$ and $\mathrm{P}=\mathrm{C}=1.66 \AA$ A ; Howells et al., 1973). In both ylides, ylide atom

Figure 1
The molecular structure of (I), showing the atomic numbering scheme, and intermolecular (single broken lines) and intramolecular (double broken lines) contacts. H atoms, except phenyl H atoms involved in hydrogen bonds, have been omitted for clarity. Displacement ellipsoids are drawn at the 30% probability level. For symmetry codes, refer to Table 2.

Figure 2
The molecular structure of (II), showing the atomic numbering scheme, and intermolecular (single broken lines) and intramolecular (double broken lines) contacts. H atoms, except phenyl H atoms involved in hydrogen bonds, have been omitted for clarity. Displacement ellipsoids are drawn at the 30% probability level. For symmetry codes, refer to Table 4.

C 1 is clearly $s p^{2}$-hybridized, the sum of the bond angles being essentially 360° [359.9 (5) and $359.6(5)^{\circ}$, respectively].

A distinctive feature that differentiates the two structures is the disposition of the $\mathrm{C}=\mathrm{O}$ groups; in (I), one carbonyl O atom is syn and the other is anti with respect to the P atom, while in (II), both O atoms are positioned anti. Though neither of the two extended ylide groups is planar, the carbonyl groups in (I) deviate less from the plane defined by the nearly trigonal ylide C atom than those in (II), the maximum absolute value for the $\mathrm{P}-\mathrm{C}_{\mathrm{ylide}}-\mathrm{C}=\mathrm{O}$ torsion angles being 18.2 (2) ${ }^{\circ}$ for (I) and 30.2 (2) ${ }^{\circ}$ for (II). This structural disposition favors an extensive electronic delocalization in the nearly planar ylide system in (I) and the interaction of one carbonyl O atom with the cationoid P atom, and minimizes intramolecular interference involving methyl groups.

Both structures have several intra- and intermolecular nonbonding interactions, which, despite being weak, have profound effects on both the molecular and the packing conformations. The intramolecular interactions and contacts are mainly of the $\mathrm{C}-\mathrm{H} \cdots \pi$ type, involving methyl H atoms and phenyl groups. In (I), methyl atom C5 interacts with a phenyl ring, with a $\mathrm{H} 5 B \cdots C g 1$ distance of $2.79 \AA$ and a C5 $\cdots C g 1$ distance of 3.541 (3) \AA (Fig. 1; Cg1 is the centroid of the C11/C21/C31/C41/C51/C61 ring). In (II), the C $\cdots \pi$ (arene) contacts involve methyl atom C 7 , with a $\mathrm{C} 7 \cdots C g 2$ distance of 3.984 (6) \AA (Fig. 2; Cg2 is the centroid of the C12/C22/C32/ C42/C52/C62 ring). The first of these interactions has an important effect on the molecular geometry, through the reduction of the $\mathrm{C} 11-\mathrm{P} 1-\mathrm{C} 13$ angle to $103.31(8)^{\circ}$, sensibly smaller than expected for a strictly tetrahedral P atom, and with the concomitant opening of the $\mathrm{C} 1-\mathrm{P} 1-\mathrm{C} 12$ angle [114.62 (9) ${ }^{\circ}$; Fig. 1].
There are also several short $\mathrm{P} \cdots \mathrm{O}$ contacts of different types, as a result of conformational differences in the two structures; in (I), such contacts involve carbonyl atom O1, which is syn to phosphorus and thus favored for this type of interaction $[\mathrm{P} 1 \cdots \mathrm{O} 1=2.767(2) \mathrm{A}]$. The corresponding O atoms (O2 and O4) in (II) are oriented away from phosphorus and are therefore prohibited from this kind of contact but have a short O2 . O 4 intramolecular distance of 2.816 (3) \AA. The syn-oriented alkoxy atoms O1 and O3 (relative to phosphorus) are oriented near phosphorus [$\mathrm{P} \cdots \mathrm{O}=3.028$ (3) and 2.775 (3) \AA, respectively]. Intermolecular interactions are mainly $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving phenyl donors and carbonyl acceptors (Tables 2 and 4). However, the most important effects are those that allow (or forbid) electronic delocalization.

In (I), the distortions from planarity of the extended ylide group (as induced by non-bonding interactions) are not extremely severe; the $\mathrm{P}-\mathrm{C}-\mathrm{C}=\mathrm{O}$ torsion angles (Table 1) suggest some degree of coplanarity and, concomitantly, ylide resonance involving both acyl moieties. This interpretation correlates with the IR carbonyl stretching frequencies in KBr (1600 and $1557 \mathrm{~cm}^{-1}$), which are similar to those in CHCl_{3} (1601 and $1540 \mathrm{~cm}^{-1}$). In (II), however, they appear to favor the out-of-plane geometry of the ylide and carbonyl moieties, and the consequent decrease in ylide resonance. The out-of-

organic compounds

plane torsion angles (Table 3) are consistent with the IR carbonyl stretching frequencies (1711 and $1632 \mathrm{~cm}^{-1}$), indicating that in the solid state only one carbonyl group is sufficiently close to coplanarity with respect to the ylide moiety to participate significantly in electronic delocalization.

It is often assumed that in the search for a balance between opposing ylide resonance and non-bonding interactions it is the former that dominates conformations of stabilized phosphorus ylides, and structures are usually written with a formal double bond between the ylide and acyl C atoms. This structural assumption appears to be valid for (I) both in the crystal and in solution, and for the keto esters, but it is not valid for (II). To this extent, (II) behaves differently from the other ylides stabilized by keto and ester groups as a result of interactions in the solid state of carbonyl atoms O 2 and O 4 with H atoms of neighboring ylides. The presence (or absence) of such interactions is therefore a major factor controlling conformation both in the crystalline state and in solution.

Experimental

Compound (I) was prepared by reaction of 1-(triphenylphosphoranylidene) propan-2-one with acetic anhydride (Chopard et al., 1965) (yield 80%, m.p. 437-438 K from ethyl acetate/cyclohexane, 1:1). Compound (II) was prepared by Horner \& Oediger (1958) from triphenylphosphine dichloride and diethyl malonate in a basic medium (56% yield), but we report here a simpler synthesis by transylidation. A solution of ethyl chloroformate (39 mmol) in dry benzene (10 ml) was added slowly to (carboethoxymethylene)triphenylphosphorane (60 mmol) in dry benzene (100 ml) under a dry atmosphere at room temperature. After 1 h , (carboethoxymethyl)triphenylphosphonium chloride separated from the stirred solution as a white solid. The filtered solvent was evaporated to give an oil which was crystallized from ethyl acetate (yield 85%, m.p. 379380 K).

Compound (I)

Crystal data

$\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{P}$
$M_{r}=360.37$
Monoclinic, $P 2_{1} / c$
$a=14.9365$ (18) \AA
$b=9.6588(13) \AA$
$c=13.7975$ (16) \AA
$\beta=107.907$ (9) ${ }^{\circ}$
$V=1894.1$ (4) \AA^{3}
$Z=4$

Data collection

Siemens $R 3 m$ diffractometer
$\omega / 2 \theta$ scans
3480 measured reflections
3325 independent reflections
2782 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.013$
$\theta_{\max }=25.0^{\circ}$
Refinement
Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.106$
$S=1.05$
3325 reflections
237 parameters
H-atom parameters constrained
$D_{x}=1.264 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25
\quad reflections
$\theta=7.5-12.5^{\circ}$
$\mu=0.16 \mathrm{~mm}^{-1}$
$T=295(2) \mathrm{K}$
Rectangular prism, colorless
$0.40 \times 0.24 \times 0.20 \mathrm{~mm}$

$$
\begin{aligned}
& h=-17 \rightarrow 16 \\
& k=-11 \rightarrow 0 \\
& l=0 \rightarrow 16 \\
& 2 \text { standard reflections } \\
& \quad \text { every } 98 \text { reflections } \\
& \quad \text { intensity decay: } 1.5 \%
\end{aligned}
$$

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0657 P)^{2} \\
&+0.5296 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.004 \\
& \Delta \rho_{\max }=0.22 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.26 \text { e } \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$ for (I).

P1-C1	$1.7521(18)$	$\mathrm{O} 2-\mathrm{C} 4$	$1.228(2)$
$\mathrm{P} 1-\mathrm{C} 11$	$1.8109(18)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.444(3)$
$\mathrm{P} 1-\mathrm{C} 12$	$1.8159(18)$	$\mathrm{C} 1-\mathrm{C} 4$	$1.449(3)$
$\mathrm{P} 1-\mathrm{C} 13$	$1.8182(18)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.507(3)$
$\mathrm{O} 1-\mathrm{C} 2$	$1.243(2)$		
$\mathrm{C} 1-\mathrm{P} 1-\mathrm{C} 11$	$110.03(8)$	$\mathrm{C} 12-\mathrm{P} 1-\mathrm{C} 13$	$111.14(8)$
$\mathrm{C} 1-\mathrm{P} 1-\mathrm{C} 12$	$114.62(9)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{P} 1$	$110.80(13)$
$\mathrm{C} 1-\mathrm{P} 1-\mathrm{C} 13$	$109.22(8)$	$\mathrm{C} 4-\mathrm{C} 1-\mathrm{P} 1$	$125.20(14)$
$\mathrm{C} 11-\mathrm{P} 1-\mathrm{C} 12$	$107.92(9)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 4$	$123.94(17)$
$\mathrm{C} 11-\mathrm{P} 1-\mathrm{C} 13$	$103.31(8)$		
$\mathrm{P} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1$	$18.2(2)$	$\mathrm{P} 1-\mathrm{C} 1-\mathrm{C} 4-\mathrm{O} 2$	$164.61(16)$

Table 2
Hydrogen-bond and short-contact geometry ($\left({ }^{\circ},{ }^{\circ}\right.$) for (I).

$D-\mathrm{H} \cdots A$	D-H	H \cdots A	D $\cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 31-\mathrm{H} 31 \cdots \mathrm{O} 2^{\text {i }}$	0.93	2.59	3.422 (3)	149
$\mathrm{C} 63-\mathrm{H} 63 \cdots \mathrm{O}{ }^{\text {ii }}$	0.93	2.47	3.183 (2)	134
C51-H51 . $\mathrm{O}^{\text {iiii }}$	0.93	2.52	3.376 (3)	153

Symmetry codes: (i) $x,-y+\frac{1}{2}, z-\frac{1}{2}$; (ii) $-x+1,-y,-z$; (iii) $x, y+1, z$.

Compound (II)

Crystal data

$\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{P}$
$M_{r}=420.42$
Monoclinic, $P 2_{1} / c$
$a=12.572(14) \AA$
$b=9.022(12) \AA$
$c=19.52(2) \AA$
$\beta=90.12(2)^{\circ}$
$V=2214(4) \AA^{3}$
$Z=4$
$D_{x}=1.261 \mathrm{Mg} \mathrm{m}^{-3}$

Siemens $R 3 m$ diffractometer
$\omega / 2 \theta$ scans
4069 measured reflections
3880 independent reflections
3138 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=25.1^{\circ}$
$h=0 \rightarrow 14$
$k=-10 \rightarrow 0$
$=-23 \rightarrow 23$

> Mo $K \alpha$ radiation
> Cell parameters from 25 \quad reflections
> $\theta=7.5-12.5^{\circ}$
> $\mu=0.15 \mathrm{~mm}^{-1}$
> $T=295(2) \mathrm{K}$
> Rectangular prism, colorless $0.35 \times 0.20 \times 0.15 \mathrm{~mm}$

2 standard reflections every 98 reflections intensity decay: 1.8%

Table 3
Selected geometric parameters ($\AA^{\circ}{ }^{\circ}$) for (II).

P1-C1	$1.748(3)$	O3-C5	$1.372(3)$
P1-C11	$1.828(3)$	O3-C6	$1.438(3)$
P1-C12	$1.819(4)$	O4-C5	$1.214(3)$
P1-C13	$1.814(3)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.453(3)$
O1-C2	$1.363(3)$	$\mathrm{C} 1-\mathrm{C} 5$	$1.440(4)$
O1-C3	$1.482(4)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.466(5)$
$\mathrm{O} 2-\mathrm{C} 2$	$1.214(4)$		
			$117.4(2)$
C1-P1-C11	$108.60(15)$	$\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 3$	$116.4(2)$
C1-P1-C12	$115.14(16)$	$\mathrm{C} 5-\mathrm{O} 3-\mathrm{C} 6$	$122.95(19)$
C1-P1-C13	$111.66(11)$	$\mathrm{P} 1-\mathrm{C} 1-\mathrm{C} 2$	$117.87(17)$
C11-P1-C12	$108.71(12)$	$\mathrm{P} 1-\mathrm{C} 1-\mathrm{C} 5$	$118.8(2)$
C11-P1-C13	$106.69(11)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 5$	
$\mathrm{C} 12-\mathrm{P} 1-\mathrm{C} 13$	$105.68(13)$		$170.8(2)$
$\mathrm{P} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 2$	$-149.8(2)$	$\mathrm{P} 1-\mathrm{C} 1-\mathrm{C} 5-\mathrm{O} 4$	

Table 4
Hydrogen-bond and short-contact geometry ($\AA^{\circ},^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C53-H53 $\cdots \mathrm{O}^{\mathrm{iv}}$	0.93	2.36	$3.213(6)$	152

Symmetry codes: (iv) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$.

Refinement

Refinement on F^{2}	$(\Delta / \sigma)_{\max }=0.003$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$	$\Delta \rho_{\max }=0.43 \mathrm{e} \AA^{-3}$
$w R\left(F^{2}\right)=0.129$	$\Delta \rho_{\min }=-0.22 \mathrm{e}^{-3}$
$S=1.10$	Extinction correction:
3880 reflections	SHELXL97
272 parameters	Extinction coefficient:
H-atom parameters constrained	$0.0202(15)$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.059 P)^{2}\right.$	
$\quad+1.0148 P]$	
\quad where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$	

H atoms were placed at idealized positions $(\mathrm{C}-\mathrm{H}=0.93 \AA$ for CH atoms, $0.97 \AA$ for CH_{2} atoms and $0.96 \AA$ for CH_{3} atoms), with $U_{\text {iso }}(\mathrm{H})$ values of $x U_{\mathrm{eq}}(\mathrm{C})$, having $x=1.5$ for methyl H atoms and $x=1.2$ for the remainder. Methyl H atoms were allowed to rotate about the $\mathrm{C}-$ C axis. The monoclinic character of (II) [$\beta=90.12$ (2) ${ }^{\circ}$] was originally checked through the agreement between equivalents [$R_{\text {int }}$ (monoclinic) $=0.027$ and $R_{\text {int }}($ orthorhombic $\left.)=0.545\right]$.

For both compounds, data collection: P3/P4-PC (Siemens, 1991); cell refinement: P3/P4-PC; data reduction: XDISK in SHELXTL/PC (Sheldrick, 1991); structure solution: SHELXS97 (Sheldrick, 1997); structure refinement: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1994); software used to prepare material for publication: SHELXL97.

We acknowledge the Spanish Research Council (CSIC) for providing us with a free-of-charge license to the CSD system.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GG1259). Services for accessing these data are described at the back of the journal.

References

Abell, A. D., Clark, B. M. \& Robinson, W. T. (1989). Aust. J. Chem. 42, 11611167.

Abell, A. D. \& Massy-Westropp, R. A. (1982). Aust. J. Chem. 35, 2277-2287.
Abell, A. D., Trent, J. \& Robinson, W. T. (1988). Aust. J. Chem. 41, 1243-1249.
Bachrach, S. M. (1992). J. Org. Chem. 57, 4367-4373.
Bachrach, S. M. \& Nitsche, C. I. (1994). The Chemistry of Organophosphorus Compounds, edited by F. R. Hartley, Vol. 3, ch. 4, pp. 273-302. Chichester: Wiley.
Castañeda, F., Recabarren, G. I., Hu, J., Gillitt, N. D. \& Bunton, C. A. (2003). Phosphorus Sulfur Silicon, 178, 2505-2517.
Castañeda, F., Terraza, C. A., Bunton, C. A., Gillitt, N. D. \& Garland, M. T. (2003). Phosphorus Sulfur Silicon, 178, 1973-1985.

Castañeda, F., Terraza, C. A., Garland, M. T., Bunton, C. A. \& Baggio, R. F. (2001). Acta Cryst. C57, 180-184.

Chopard, P. A., Searle, R. J. G. \& Devitt, F. H. (1965). J. Org. Chem. 30, 10151019.

Cooke, M. P. Jr \& Goswami, R. (1973). J. Am. Chem. Soc. 95, 7891-7892.
Horner, L. \& Oediger, H. (1958). Chem. Ber. 91, 437-442.
Howells, M. A. Howells, R. D., Baenziger, N. C. \& Burton, D. J. (1973). J. Am. Chem. Soc. 95, 5366-5370.
Sheldrick, G. M. (1991). SHELXTL/PC. Version 4.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1994). SHELXTL/PC. Version 5.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1991). P3/P4-PC. Version 4.27. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Wilson, I. F. \& Tebby, J. C. (1972). J. Chem. Soc. Perkin Trans. 1, pp. 31-34.

